Back to Projects

Team Name:

Team 42


Team Members:


Evidence of Work

DON'T PANIC!

Project Info

Team 42 thumbnail

Team Name


Team 42


Team Members


1 member with an unpublished profile.

Project Description


Let's muck around in AFSA's insolvency data to see if we can find anything to predict non-compliance.


Data Story


The data yielded a few interesting features after some squeezing and ringing. Males are more likely to breach their insolvency conditions than females. People who give common reasons for insolvency are less likely to breach than those who give unclear reasons or don't give reasons. Business related insolvencies yield about double the proportion of non-compliance cases. Curiously, when an applicant states doesn't state their family situation as part of the initial insolvency, they are much more likely to breach its conditions.


Evidence of Work

Video

Homepage

Project Image

Team DataSets

Non-compliance in personal insolvencies

Description of Use Primary data set used to predict non-compliance.

Data Set

Challenge Entries

To bankruptcy or not to bankruptcy, keeping the process real.

Helping predict non-compliance in the personal insolvency system. How can Artificial Intelligence and Machine Learning assist us in the future?

Eligibility: Must use this dataset: https://data.gov.au/dataset/non-compliance-personal-insolvencies

Go to Challenge | 13 teams have entered this challenge.